---------------------------------------------------------

水がいっぱいに入った直方体の形をした水そうの中に、1辺の長さが6cmの正方形を底面とする直方体の柱が図1のように立っています。柱を3.2cm持ち上げたら、水面が0.8cm下がりました。図2はこの様子を表しています。次に、図3のように、イの長さが図2のアの長さの2/7倍となるように柱を持ち上げたら、水面がさらに1.2cm下がりました。このとき、次の問に答えなさい。

Pic_1941q

(1)水そうの底面積は何cu ですか。

(2)水そうの深さは何cmですか。

---------------------------------------------------------

----------------------------------------------------

こたえ

(1)直方体の柱を3.2cm持ち上げると、水面が0.8cm

下がっているので、逆に考えると、下の図4の黄色い部分が

水そうに入ると、緑の部分の水面が上がるということです。

   Pic_1942a

水そうの底面積を□cu とすると、柱の底面積が36cuなので、

体積の関係は、

 3.2×36=0.8×(□−36) となり、

□=180cu と求められます。

 

 (2)図2から、さらに□cm持ち上げると、1.2cm水面が

下がったとすると、(1)と同様に逆に考えて、□cm沈めると

1.2cm水面が上がったことになり、下の図5のように、

黄色い部分の体積と緑の部分の体積が等しく、

  Pic_1943a

 36×□=1.2×(180−36) より、

□=4.8cm とわかります。

 

イ=ア×2/7 なので、

1.2+4.8=ア×5/7 より、ア=8.4cm となります。

 

 水そうの高さ=ア+0.8+3.2

          =8.4+4=12.4cm と求められます。

中学入試の図形問題はどう解く?にもどる

----------------------------------------------------

----------------------------------------------------

---------------------------------------------------------

1000題の中学受験算数解法集